МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

"Казанский (Приволжский) федеральный университет"

УТВЕРЖДАЮ

Первый проректор – проректор по научной деятельности

30 2023 г.

Д.А. Таюрский

Программа вступительного экзамена по специальности

Уровень высшего образования: подготовка кадров высшей квалификации **Тип образовательной программы:** программа подготовки научных и

научно-педагогических кадров в аспирантуре

Научная специальность: 1.5.21 Физиология и биохимия растений

Форма обучения: очная

Общие указания

Вступительные испытания по научной специальности аспирантуры 1.5.21 Физиология и биохимия растений охватывают стандартные разделы университетских курсов по физиологии и биохимии растений. Вопросы и структура экзаменационных билетов приведены ниже.

Порядок проведения вступительных испытаний

Вступительное испытание проводится в форме экзамена на основе билетов. В каждом экзаменационном билете по 2 вопроса. Экзамен проходит в письменной форме. Подготовка к ответу составляет 1 академический час (60 минут) без перерыва с момента раздачи билетов. Задания оцениваются от 0 до 100 баллов в зависимости от полноты и правильности ответов.

Критерии оценивания

Оценка поступающему за письменную работу выставляется в соответствии со следующими критериями.

Отлично (80-100 баллов)

Поступающий обнаружил всестороннее, систематическое и глубокое знание материала, умение свободно выполнять задания, усвоил основную литературу и знаком с дополнительной литературой, рекомендованной данной программой, усвоил взаимосвязь основных понятий курса в их значении для приобретаемой профессии, проявил творческие способности в понимании, изложении и использовании учебно-программного материала.

Хорошо (60-79 баллов)

Поступающий обнаружил полное знание вопросов физиологии растений и биохимии, успешно выполнил предусмотренные программой задания, усвоил основную литературу, рекомендованную данной программой, показал систематический характер знаний по физиологии и биохимии растений и способен к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

Удовлетворительно (40-59 баллов)

Поступающий обнаружил знание основ физиологии растений и биохимии растений в объеме, необходимом для дальнейшей учебы и предстоящей работы по профессии, справился с выполнением заданий, предусмотренных программой, знаком с основной литературой, рекомендованной программой, допустил погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладает необходимыми знаниями для их устранения под руководством преподавателя.

Неудовлетворительно (менее 40 баллов)

Поступающий обнаружил значительные пробелы в знаниях основ физиологии и биохимии растений, допустил принципиальные ошибки в выполнении предусмотренных программой заданий и не способен продолжить обучение по физиологии растений.

Вопросы программы вступительного экзамена в аспирантуру по научной специальности 1.5.21 Физиология и биохимия растений

Ввеление

Объекты биохимии и физиологии растений - эукариотические фототрофные организмы. Уникальные особенности растительного организма: фото- и автотрофность. Автотрофность в отношении усвоения минеральных элементов. Специфика обмена зеленых растений по сравнению с другими организмами. Космическая роль зеленого растения. Значение фотоавтотрофов в создании и поддержании газового состава атмосферы, водного, почвенного и климатического режима на планете.

Методологические основы исследований в биохимии и физиологии растений. Специфические методы биохимии и физиологии растений. Сочетание различных уровней исследования (субклеточный, клеточный, организменный, биоценотический) в биохимии и физиологии растений.

Физиология и биохимия растений - теоретическая основа растениеводства и новых отраслей биотехнологии.

Основные компоненты растительного организма и их функции

Углеводы.

Особенности состава и метаболизма углеводов растений. Моносахариды, их структура и взаимопревращения, основные представители. Моносахара, как субстраты для синтеза других веществ. Фосфорные эфиры сахарозы и нуклеозиддифосфаты - активированные формы углеводов. Олигосахариды, их состав, структура, основные представители. Сахароза; локализация ее синтеза и функции. Полисахариды: состав, типы связей, ветвление. Полисахариды запасные и структурные. Структура крахмала и его деградация. Образование крахмальных зерен в запасающих органах.

Липиды.

Общие свойства липидов, классификация, номенклатура. Насыщенные и ненасыщенные жирные кислоты: классификация, синтез, катаболизм и функции. Особенности строения ненасыщенных жирных кислот растений. Редкие жирные кислоты. Триглицериды и их функции. Полярные липиды: фосфо- и гликолипиды, их роль в обмене. Стероиды. Особенности растительных стероидов, фитостерины. Гликозиды, ацилгликозиды, эфиры стеринов. Биологические мембраны, специфика различных мембран растительной клетки.

2.3. Аминокислоты и белки.

Структура и ионные свойства аминокислот. Протеиногенные аминокислоты. Аминосоединения, синтезируемые первично из минерального азота и синтез аминокислот. Реакции переаминирования. Ключевая роль глутаминовой кислоты в метаболизме аминокислот. Функции свободных аминокислот и аминокислот в составе белковых молекул. Реакции дезаминирования и декарбоксилирования аминокислот. Аминокислоты как субстраты синтеза других азотсодержащих соединений. Небелковые аминокислоты растений.

Первичная структура молекулы полипептида (пептидная связь. С- и N- конец полипептида). Фибриллярные и глобулярные белки. Ионные свойства полипептидов: рКа ионогенных групп, изоэлектрическая точка. Элементы вторичной структуры белков - аспираль и р-структура. Третичная и четвертичная структура белков. Дисульфидные и водородные связи, ионные и гидрофобные взаимодействия. Роль отдельных аминокислот в образовании и поддержании пространственной структуры белковой молекулы. Белковые комплексы. Понятие субъединицы. Функциональная классификация белков.

Нуклеотиды и нуклеиновые кислоты.

Пуриновые и пиримидиновые основания. Нуклеозиды и нуклеотиды: структура, синтез, функции. Нуклеозидполифосфаты. Циклические нуклеотиды и их роль.

Нуклеотидные коферменты и переносчики соединений, их основные типы и биологическое значение.

Нуклеиновые кислоты: первичная структура, нуклеотидный состав. Вторичная и третичная структура ДНК. Структура РНК. Типы РНК (информационная, транспортная, рибосомальная).

Вещества специализированного обмена растений (вторичные метаболиты).

Особенности соединений, которые относят к вторичным метаболитам. Основные классы вторичных метаболитов: строение, классификация и распространение.

Алкалоиды: Изопреноиды

Фенольные соединения. Минорные классы вторичных метаболитов. Пути биосинтеза основных классов вторичных метаболитов.

Ферменты и механизмы их действия.

Характеристика ферментов как высокоспециализированных белковых катализаторов. Алифатическая и простетическая части фермента. Кофакторы ферментной реакции. Энергетическая основа катализа: активный центр фермента. Специфичность действия ферментов. Ферментная кинетика. Фермент-субстратный комплекс. Уравнение Михаэлиса-Ментен. Величины Км и Vmax, их биологический смысл. Ингибирование ферментов. Действие рН и температуры на скорость ферментной реакции. Конкурентное, неконкурентное и необратимое ингибирование. Механизмы регуляции ферментной активности. Регуляция по принципу обратной связи: активация и ингибирование. Аллостерическая регуляция. Индукция и репрессия синтеза. Изозимы и конформеры. Регулирование с участием протеинкиназ.

Растительная клетка

Особенности строения, структурная и функциональная организация растительной клетки. Симбиогенная гипотеза возникновения растительной клетки.

Ядро. Особенности организации ядерного генома растений. Структура генома, полиморфизм растительной ДНК. Копийность разных генов и участков ДНК. Особенности метилирования растительной ДНК и его влияние на экспрессию ядерных генов. Мобильные генетические элементы растений (транспозоны). Ретротранспозоны и ДНК-транспозоны. Ас и Ds - элементы.

Пластидная система. Типы пластид, особенности строения, онтогенез. Геном пластид. Прокариотические черты и копийность пластидного генома. Полицистронный тип репликации пластидных генов. Мозаичная структура пластидных генов. Созревание пластидной РНК, сплайсинг и редактирование транскриптов. Стабильность пластидной РНК. Белки, кодируемые пластидным геномом. Синтез белка в пластидах и его регуляция светом. РНК-полимеразы пластид, пластидные рибосомы. Двойное кодирование (ядерное и пластидное) большинства компонентов фотосинтетического аппарата: ФС1, ФСП, b₆f-комплекса, ССК, АТФ-синтазы, пластидной НАД-Н-дегидрогеназы, Rubisco. Транспорт ядерно-кодируемых белков в пластиды. Размножение и наследование пластид.

Митохондрии растений. Особенности строения митохондрий растений. Особенности структуры митохондриального генома растений. Прокариотические черты и размер митохондриального генома растений. Мозаичная структура митохондриальных генов, сплайсинг и редактирование транскриптов. Белки, кодируемые митохондриальным геномом. Особенности синтеза белка в митохондриях, рибосомы митохондрий, транспорт белков и некоторых т-РНК из ядра в митохондрию. Двойное кодирование (ядерное и пластидное) большинства белков дыхательной ЭТЦ: НАД-Н-дегидрогеназы, сукцинат-дегидрогеназы, bc-комплекса, цитохром-оксидазы, АТФ-синтазы.

Перенос генетического материала между органеллами. Совместная работа трех геномов.

Мембранные системы растительной клетки. Плазмалемма, тонопласт, ЭПР, аппарат Гольджи.

Цитоскелет растительной клетки. Структура цитоскелета. Актин и тубулин, их полимеризация и деполимеризация, G-актин и F-актин. Белки, ассоциированные с цитоскелетом. Участие актиновых филаментов во внутриклеточных движениях. Участие цитоскелета в движении и закреплении органелл. Роль цитоскелета в синтезе целлюлозы. Участие цитоскелета в процессе деления клетки,

Клеточная стенка (КС). Углеводные компоненты клеточной стенки. Целлюлоза, гемицеллюлозы, пектины. Каллоза. Структурные белки клеточной стенки: белки, обогащенные гидроксипролином (HRGPs), пролином (PRPs), глицином (GRPs), арабиногалактановые белки (AGPs). Функциональные белки КС: экспансины, ферменты.

Первичная и вторичная клеточная стенка. Лигнины, воска, кутин, суберин. Плазмодесмы (ПД), их строение. Количество плазмодесм на разных участках клеточной стенки и в разных тканях. Транспорт веществ по плазмодесмам. Два типа строения клеточной стенки у покрытосеменных растений. Образование клеточной стенки. Биосинтез микрофибрилл целлюлозы и их самосборка. Роль аппарата Гольджи в биосинтезе элементов матрикса. Функции КС: каркасная, защитная, транспортная, регуляторная, сигнальная. Олигосахарины.

Онтогенез клетки растения. Стадии онтогенеза: деление клетки, рост клетки растяжением, дифференцировка, старение и смерть. Клеточный (митотический) цикл. Фазы цикла - G1, S, G2, M. Запуск и регулирование клеточного цикла. Циклины, циклинзависимые протеинкиназы (CDKs). Апоптоз растительных клеток - программная гибель клетки. Сигналы и механизмы апоптоза.

Клетки растений in vitro. Дедифференциация растительной клетки in vitro и формирование популяции пролиферирующих клеток. Структурные и функциональные особенности клеток растений in vitro. Гетерогенность и асинхронность популяции клеток растений вне организма. Изолированные протопласты клеток растений. Использование клеток растений in vitro как модельной системы в физиологических исследованиях и в биотехнологии.

Биоэнергетика растительного организма

Принципы термодинамики. Преобразование энергии в клетке. Две основные формы запасания энергии в клетке: электрохимический потенциал протонов на энергизованных мембранах и макроэргические связи, взаимопревращение этих форм энергии. Уникальность энергетических процессов растений: фотосинтез и дыхание.

Фотосинтез.

Значение фотосинтеза в трансформации вещества и энергии в природе. Физико-химическая сущность процесса фотосинтеза и его значение в энергетическом и пластическом обмене растения. Лист как орган фотосинтеза. Структурно-функциональная организация фотосинтетического аппарата. Основные показатели мезоструктуры листа.

Элементы структуры молекулы хлорофилла, ответственные за функцию поглощения, запасания и преобразования энергии в процессе фотосинтеза. Механизм поглощения и испускания света молекулой; спектры поглощения. Электронно-возбужденные состояния хлорофиллов, пути их дезактивации. Преобразования электромагнитной энергии в редоксэнергию; обратимые окислительно-восстановительные превращения хлорофиллов.

Хлорофилл-белковые комплексы (ХБК); механизмы образования, значение связи пигментов с белком. Ориентация пигментов в ХБК. Механизмы энергетического взаимодействия пигментов в комплексах (экситонное взаимодействие) и между комплексами (переходные состояния).

Роль каротиноидов в фотосинтезе. Антенная функция, возбужденные состояния каротиноидов, механизмы миграции энергии на хлорофилл. Механизм защитного действия каротиноидов. Функции каротиноидов в реакционном центре, специфика цисконформации. Значение ксантофилловых циклов у высших растений и водорослей; фотопротекторная функция зеаксантина и диазоксантина.

Первичные процессы фотосинтеза, их структурно-функциональная организация. Представление о фотосинтетической единице. Антенный комплекс, реакционный центр. Механизмы миграции энергии в хлоропластах. Современные модели структурной организации реакционных центров бактерий и высших растений. Механизм преобразования электромагнитной энергии в энергию разделенных зарядов в фотохимических центрах.

Электрон-транспортная цепь фотосинтеза. Представления совместном функционировании двух фотосистем. Компоненты ЭТЦ и последовательность переноса электрона по цепи (Z-схема). Циклический, нециклический и псевдоциклический электронный транспорт. Пространственная организация ЭТЦ в тилакоидной мембране: основные функциональные комплексы ЭТЦ (ФС-1, ФС-2,), их структура и функции. Строение и функции ФС-2. Организация в тилакоидной мембране и функционирование реакционного центра ФС-2. Система фотолиза воды и образования кислорода при фотосинтезе. Строение и функции ФС-1. Образование трансмембранного протонного градиента в процессе электронного транспорта. Структура и функции цитохром b₆/f комплекса, Q - цикл. Регуляция потоков электронов при фотосинтезе. Фотосинтетический контроль. Локализация ЭТЦ комплексов в гранальных и стромальных мембранах тилакоидов. Системы регуляции циклического и нециклического электронного транспорта. фотосинтезе активных при форм кислорода. Фотосинтетическое фосфорилирование. Основные типы, их физиологическое значение, механизмы регуляции. Механизмы энергетического сопряжения транспорта электронов и синтеза АТФ. Сопрягающие факторы фотофосфорилирования, их функции, структура, механизм действия. Механизм работы каталитических центов CFI.

Система регуляции циклического и нециклического электронного транспорта. Конечные продукты световой и темновой фазы фотосинтеза.

Химизм процессов ассимиляции углерода в фотосинтезе. Использование продуктов световой стадии для ассимиляции углекислоты. Рубиско: содержание фермента, структура, функции, регуляция. Цикл Кальвина, основные ферменты и механизмы регуляции цикла. Фотодыхание. ФЭП- карбоксилаза, ее характеристика и локализация. Цикл Хэтча-Слэка-Карпилова, его функциональное значение. Организация процесса ассимиляции в клетках мезофилла и обкладки: особенности строения хлоропластов и реакций фотосинтеза. Обмен соединениями между мезофильными клетками и клетками обкладки. Характеристика групп С4 растений. Фотосинтез у САМ- растений: особенности организации процесса запасания энергии и фиксации углекислоты во времени.

Транспорт продуктов фотосинтеза из хлоропласта: челночные системы выноса.

Ассимиляция углекислоты в листе. Действие внешних факторов (интенсивность и качество света, фотопериод, концентрация CO_2 , O_2 , температура и др.) на фотосинтез. Различие в кривых зависимости скорости ассимиляции от концентрации CO_2 и O_2 в газовой среде у C-3 и C-4 растений. Квантовый выход фотосинтеза. Транспорт CO_2 к местам фиксации, роль карбоангидразы. Устьичная и клеточная проводимость для CO_2 в зависимости от внешних факторов и возраста листа.

Дыхание.

Ферментные системы дыхания. Характеристика отдельных групп дыхательных ферментов. Гликолиз. Основные ферменты синтеза и гидролиза сахарозы и крахмала. Ферментативные реакции и энергетический баланс гликолиза, компартментация процесса в клетках растений. Гликолиз и глюконеогенез. Особенности гликолиза у растений: АТФ-зависимая фосфофруктокиназа и пирофосфатзависимая фосфофруктокиназа - регуляторные ферменты гликолиза. Фруктозо-2,6 фосфат - регуляторная молекула углеводного обмена в растениях.

Окислительный пентозофосфатный цикл. Цикл трикарбоновых кислот. Глиоксилатный цикл. Глиоксисомы и глиоксилатный цикл.

Дыхательная электронтранспортная цепь: основные компоненты, способы регистрации редокс- состояний. Механизм образования трансмембранного протонного градиента в процессе электронного транспорта.

Особенности ЭТЦ дыхания растений. Альтернативные НАДН-дегидрогеназы - локализация в мембранах и функции. Альтернативная оксидаза: структура, функции, принципы регуляции. Альтернативный путь переноса электронов в дыхательной цепи растений и его физиологическое значение. Ингибиторы электронного транспорта и ингибиторный анализ при изучении дыхательной активности растительных митохондрий.

Окислительное фосфорилирование. Энергизация мембран при функционировании ЭТЦ дыхания. АТФ- синтаза митохондрий. Структура, локализация, пространственная организация. Современные представления о механизме синтеза АТФ.

Регуляция электронного транспорта в дыхательной цепи. Дыхательный контроль. Понятие о разобщителях. Энергетическая эффективность дыхания. Челночные системы выноса ATФ и транспорт метаболитов через мембраны митохондрий.

Электронтранспортные цепи плазмалеммы, эндоплазматиче-ского ретикулума, микротелец, их структура и функции.

Цитоплазматические оксидазы (аскорбатоксидаза, полифенолоксидазы, ксантиноксидазы, пероксидазы, каталазы). Их локализация, функции, вклад в общее поглощение кислорода растительной тканью. Изменения в интенсивности и путях дыхания в онтогенезе и при действии факторов среды.

Водообмен

Количество потребляемой растением воды, содержание воды в клетках, тканях и органах. Молекулярная структура и физические свойства воды. Взаимодействие молекул воды и биополимеров, гидратация. Состояние воды в клетке. Вода, как структурный компонент растительной клетки, ее участие в биохимических реакциях.

Термодинамические показатели состояния воды: активность воды, химический и водный потенциал. Составляющие водного потенциала клетки: осмотический, матричный потенциал, потенциал давления. Градиент водного потенциала как движущая сила поступления и передвижения воды. Основные закономерности поглощения воды клеткой: взаимосвязь между изменениями водного потенциала клетки, водного потенциала раствора и водного потенциала давления. Аквапорины (белки водных каналов), их структура, принцип работы. Аквапорины плазмалеммы и тонопласта, их роль в поддержании водного баланса воды.

Транспорт воды по растению. Корень как основной орган поглощения воды. Механизм радиального транспорта воды в корне. Роль ризодермы и эндодермы в этом процессе. Поступление воды в сосуды ксилемы. Ксилема - основная транспортная магистраль движения водного тока в системе «почва - растение - атмосфера». Характеристика «нижнего» и «верхнего» двигателей водного тока. Корневое давление.

Выделение воды растением. Гуттация, «плач» растений. Транспирация и ее роль в транспирации: растений. Количественные показатели интенсивность, транспирационный коэффициент. Устьичная продуктивность, И кутикулярная транспирация. Строение устьиц у двудольных и однодольных растений, механизм устьичных движений. Влияние внешних факторов (свет, температура, влажность воздуха, почвы) на интенсивность транспирации. Суточные колебания транспирации. Регуляторная роль устьиц в водо- и газообмене.

Экология водообмена растений. Особенности водообмена у растений разных экологических групп (ксерофитов, мезофитов, гигрофитов, галофитов).

Минеральное питание

Потребность растений в элементах минерального питания. Содержание и соотношение минеральных элементов в почве и растениях, концентрирование элементов в тканях растения. Функциональная классификация элементов минерального питания.

Корень как орган поглощения минеральных элементов, специфических синтезов с их участием и транспорта. Система взаимодействия "корень - почва". Роль микоризы.

Поглощение ионов и их передвижение в корне. Клеточная стенка как фаза для движения ионов. Понятие свободного пространства (СП), Механизмы поступления ионов в СП и значение этого этапа поглощения.

Транспорт ионов через мембраны; движущие силы переноса ионов. Пассивный и активный транспорт ионов.

Вторичный активный транспорт ионов. Белки-переносчики ионов (портеры). Ионные каналы растений; общая характеристика их структуры, функционирования и регуляции.

Модели поступления ионов в корень, транспорт минеральных веществ в ксилему. Апопластный и симпластный путь. Роль плазмодесм и ЭР. Синтетическая функция корня. Связь поступления и превращения ионов с процессами дыхания. Регуляция поступления ионов на уровне целого растения.

Роль макроэлементов.

Азот. Особенности азотного обмена растений. Источники азота для растений. Минеральные формы азота, используемые растениями. Физиологические особенности поступления и включения в обмен аммиачного и нитратного азота. Характеристика систем транспорта нитрата и аммония. Видовая специфика усвоения разных форм азота

Симбиотическая фиксация молекулярного азота: механизмы восстановления, источники энергии и восстановители. Характеристика и функционирование нитрогеназы.

Восстановление нитратов растениями. Нитрат- и нитритредуктаза: структура ферментов, локализация, регуляция активности и синтеза. Конститутивная и индуцибельная нитрогеназа. Этапы восстановления окисленного азота и их регуляция в клетке *in vivo*.

Запасные и транспортные формы минерального и органического азота в зависимости от источника азотного питания. Накопление нитрата в тканях и его пулы. Круговорот азота по растению, реутилизация азота.

Сера. Поступление серы в растение, реакции восстановления и ассимиляции; аденозинфосфосульфат (АФС) фосфоаденозинфосфосульфат (ФАФС). Основные соединения серы в клетке, участие в окислительно- восстановительных реакциях. Глутатион, тиоферредоксин, фитохелатины, их функции у растений. Органические соединения окисленной серы.

Фосфор. Формы минерального фосфора в тканях, их содержание и функции. Особенности поступления фосфора и транспорта его соединений в растении. Формы минерального фосфора в тканях, их функции. Основные фосфорсодержащие компоненты клетки, их роль. Запасные формы фосфора. Компартментация соединений фосфора. Роль фосфора в регулировании активности ферментов.

Kалий. Содержание и распределение калия в клетке, тканях и органах растения; его циркуляция и реутилизация, характеристика систем транспорта K^+ их функции в растении. Роль K^+ в поддержании потенциала на мембранах. Калий и гомеостаз внутриклеточной и тканевой среды (ионный баланс, pH, осморегуляция, гидратация и конформация макромолекул). Роль калия в регуляции ферментных систем.

Кальций. Накопление, формы соединений, особенности поступления и перемещения Ca^{2+} по растению. Концентрация и распределение Ca^{+} в структурах клетки. Сигнальная роль Ca^{2+} . Характеристика мембранных систем транспорта Ca^{2+} , особенности их регуляции и роль в формировании Ca^{2+} -сигнала. Структурная роль кальция в клеточной стенке.

Mагний. Содержание и соединения магния в тканях растений. Запасные формы ${\rm Mg}^{2+}$, его реутилизация и перераспределение в растении. Значение связи ${\rm Mg}^{2+}$ с аденозинфосфатами и фосфорилированными сахарами. Функции магния в фотосинтезе. Магний как активатор ферментных систем; роль в синтезе аминоацил-тРНК и в функционировании рибосом.

Микроэлементы.

Свойства тяжелых металлов, определяющие их роль в ЭТЦ фотосинтеза и дыхания и других редокс- реакциях.

Железо: доступность в почве, валентность поглощаемой формы, роль микоризы. Особенности поступления железа у двудольных и однодольных растений. Медь: Содержание и распределение в клетке и тканях. Участие в окислительновосстановительных процессах дыхания и фотосинтеза. Функции цитозольных оксидаз (аскорбат-, фенол- и диаминоксидаз).

Марганец: Активируемые им ферментные системы, его специфичность, как кофактора. Роль Mn^{2+} в функционировании Φ C-2.

Молибден: Потребность в элементе; его значение для процессов утилизации азота среды. Моптерин и функционирование нитрогеназы и нитратредуктазы.

Цинк: Структурная роль в поддержании ферментной активности и при синтезе белка. Zn-содержащие ферменты: карбоангидраза, супероксиддисмутаза (СОД).

Бор: компартментация в клетке; формы соединений. Механизмы участия в регуляции физиологических процессов и метаболизма. Структурная роль в клеточной стенке.

Нарушения в метаболизме растений при недостатке микроэлементов.

Функции «полезных» элементов: натрий, хлор, кремний, кобальт.

Дальний транспорт и круговорот веществ в растении

Транслокация веществ из листьев в другие органы: флоэмные ситовидные элементы. Состав транслоцируемых веществ (сахара, аминокислоты, гормоны, неорганические ионы и др.). Передвижение фотоассимилятов из мезофилла к сосудам флоэмы по апопласту и симпласту. Механизмы загрузки флоэмы из апопласта и симпласта. Роль сопровождающих клеток. Тип загрузки флоэмы у растений различных систематических групп и ее зависимость от климатических условий. Механизм передвижения веществ по флоэме. Модель потока воды под давлением. Поры ситовидной пластинки как открытые каналы. Скорость передвижения веществ по флоэме; их выгрузка из ситовидных элементов. Восходящий транспорт веществ по ксилеме. Состав ксилемного эксудата. Взаимосвязь транспорта воды и растворенных веществ по ксилеме. Скорости транспорта воды и отдельных веществ. Взаимодействие флоэмных и ксилемных потоков азотистых веществ и ионов. Круговорот и реутилизация минеральных веществ в растении. Функциональная роль этих физиологических процессов.

Рост и развитие растений

Определение понятий «рост» и «развитие» растений. Проблема роста и развития на организменном, органном, клеточном и молекулярном уровнях. Существование организма как развертывание во времени генетической программы; воздействие внешних факторов.

Общие закономерности роста. Показатели роста, S-образный характер кривой роста, его фазы. Компоненты «классического» анализа роста и математический анализ процесса. Типы роста у растений. Организация меристем корня и стебля. Рост и деятельность меристем. Клеточные основы роста. Рост растений и среда. Влияние температуры, света, воды, газового состава атмосферы, элементов минерального питания на ростовые процессы.

Жизненный цикл высших растений. Основные этапы онтогенеза (эмбриональный, ювенильный, репродуктивный, зрелости, старения), их морфологические, физиологические и метаболические особенности. Состояние покоя у растений. Типы покоя и их значение для жизнедеятельности растений.

Механизмы морфогенеза растений.

Гормональная регуляция роста и развития растений.

Ауксины. Биосинтез, образование конъюгатов, деградация ауксинов. Активный транспорт ауксинов в растениях. Физиологические ответы на ауксины: аттрагирующий эффект, растяжение клеток и тропизмы, дифференцировка клеток под действием ауксинов, апикальное доминирование, активизация делений клеток камбия, ризогенез. Ауксин как гормон стеблевого апекса.

Цитокинины. Биосинтез, образование конъюгатов, деградация цитокининов. Физиологическое действие. Цитокинин как гормон корневого апекса.

Взаимодействие ауксинов и цитокининов. Понятие об антагонизме и синергизме. Гормональный баланс в растении. Культура in vitro как модель для изучения гормонального баланса. Гиббереллины. Пути биосинтеза и многообразие гиббереллинов. Образование конъюгатов и деградация. Физиологическое действие гиббереллинов. Эндогенный уровень гиббереллинов и длина дня. Гиббереллины как гормоны листьев. Карликовость, вызванная нарушениями синтеза гиббереллинов. Взаимодействие с другими гормонами.

Абсиизовая кислота. Пути биосинтеза АБК в растениях и в грибах, ее метаболизм. Физиологическое действие. АБК как гормон абиотического стресса. Стратегия ответа на засуху, понижение температуры, засоление. Роль АБК в индукции защитных процессов. Взаимодействие АБК и гиббереллинов в процессах регуляции покоя.

Этилен. Биосинтез этилена. Специфика этилена как газообразного гормона. Физиологическое действие: тройной ответ проростков на этилен. Этилен как гормон механического и биотического стресса. Созревание сочных плодов и листопад в умеренных широтах как подготовка к механическому стрессу. Роль этилена как "гормона тревоги" в биоценозах. Взаимодействие этилена с ауксинами и другими гормонами. Мутации, повреждающие биосинтез этилена или его рецепцию.

Регуляторы роста растений. Брассиностероиды: биосинтез, многообразие. Физиологические эффекты: растяжение клеток, роль в дифференцировке мезофилла. Жасмоновая кислота. Биосинтез и физиологические эффекты. Место жасмонатов в регуляции ответа. Сходство ответов на жасмонат и на АБК. Салицилат и другие фенольные соединения. Возможная роль в регуляции термогенеза, ответа на вирусную инфекцию, цветении. Взаимодействие с другими гормонами. Олигосахарины.

Фоторегуляция у растений. Основные принципы фоторецепции. Отличие фоторецепторных комплексов от энергопреобразующих. Физиологически важные области спектра: красная и синяя. Фитохром и криптохром.

Фитохромная система. Структура криптохромов. Использование мутантов для исследования криптохрома. Ответы на синий свет: разгибание апикальной петельки проростков, фототропизмы, устьичные движения.

Системы регуляции физиологических процессов.

Сеть путей передачи сигнала в клетке. Восприятие воздействий и сигнальных молекул. Рецепторы стимулов и гормонов, их локализация. Роль плазмалеммы. Передача сигнала. Взаимодействие рецепторов с посредниками, передающими сигнал. Вторичные посредники передачи сигнала (фосфолипаза C^{2+} , цАМФ, инозитол-3-фосфат и др.). Участие кальция в передаче сигнала. Роль кальмодулина и Ca^{2+} -САМ комплекса в формировании ответной реакции. Протеинкиназы, значение реакции фосфорилирования/ дефосфорилирования в регуляции активности ферментов. Специфика передачи и формирования ответа на определенный стимул.

Фотопериодизм. Феноменология фотопериодизма: цветение и группы фотопериодических растений, регуляция листопада, образования почек, перехода к состоянию покоя. Восприятие длины дня: эффект прерывания ночи, фитохром, внутренние часы. Гормональная теория цветения Чайлахяна. Внутренние ритмы развития растений. Периодические явления в ритмах органогенеза и роста растений. Циркадные ритмы, механизм их образования. Настройка циркадных ритмов фотопериодом. Пластохрон. Корректировка внутренних ритмов развития внешними климатическими факторами: засухой, понижениями температуры. Глубокий (физиологический) покой и вынужденный покой. Температура и развитие растений. Явления стратификации и яровизации как экологическая адаптация. Гормональная теория вернализации растений. Прерывание глубокого покоя пониженными температурами: прорастание семян, выход почек из состояния покоя, цветение.

Эмбриональное развитие. Прорастание семян. Гормональный баланс при прорастании семян. Отношение АБК/ гиббереллины. Мутации синтеза АБК и ответа. Связь гормонального статуса семени с биосинтезом других веществ.

Регуляция вегетативного роста растений. Рост корня. Роль фитогормонов. Рост побеговой системы. Установление филлотаксиса при прорастании семени. Роль фитогормонов. Рост листа. Роль фитогормонов в закладке и развитии листа. Связь развития листа и меристемы побега.

Регуляция генеративного развития растений. Индукция и эвокация цветения. Семейства генов, содержащих MADS-домен.

Проявления пола у растений.

Устойчивость растений к неблагоприятным факторам

Стресс и адаптация - общая характеристика явлений. Неблагоприятные факторы биотической и абиотической природы. Ответные реакции растений на действие стрессоров. Специфические и неспецифические реакции. Природа неспецифических реакций. Стрессовые белки и их функции.

Водный дефиции. Классификация растений по их устойчивости к засухе. Ксерофиты. Способность растений поддерживать водный ток в системе: почва-растение -атмосфера в условиях засухи. Осмотический и гидростатический потенциалы у разных по засухоустойчивости растений. Регуляция осмотического потенциала давления с помощью осмолитов. Химическая природа и биосинтез осмолитов. Протекторная функция осмолитов. Защита белков в условиях дегидратации цитоплазмы. Пролин и полиолы как важнейшие протекторы белков. Полиамины -протекторы нуклеиновых кислот. Бетаины и их защитные функции. Белки, синтезирующиеся в условиях дегидратации. Их защитная роль. С4 и САМ- типы метаболизма как системы экономии влаги у засухоустойчивых растений.

Высокие концентрации солей. Типы почвенного засоления. Галофиты и гликофиты. Повреждающее действие солей. Адаптация растений к осмотическому и токсическому действию солей. Способы поддержание оводнённости. Осморегуляторная и протекторная функции осмолитов. Протекторные белки (ПБ), синтезирующиеся в растениях при солевом стрессе. Индукция биосинтеза ПБ высокими концентрациями солей. Функции протекторных белков. Системы ионного гомеостатирования клеток. Компартментация ионов, роль вакуоли. Роль плазмалеммы и тонопласта в поддержании низких концентраций Na⁺ в цитоплазме при засолении. Na⁺-транспортирующие системы и их свойства. Стратегия избежания накопления ионов в активно метаболизирующих тканях и генеративных органах в условиях засоления.

Экстремальные температуры. Растения как экзотермные организмы. Температурные адаптации, связанные с изменением содержания ферментов в клетках и их состава. Структурные перестройки клеточных изоферментного температурных адаптациях. Роль изменения химического состава жирных кислот и соотношения насыщенных и ненасыщенных жирных кислот в обеспечении необходимой подвижности липидного бислоя мембраны при температурных адаптациях. Изменение вязкости липидов и регуляция активности локализованных в мембранах ферментов. Роль и функция десатураз в изменении индекса ненасыщенности жирных кислот при температурных адаптациях.

Толерантность растений к замораживанию. Предотвращение образования льда в клетках. Химическая природа биологических антифризов. Молекулярные механизмы их действия. Низкомолекулярные криопротекторы. Закалка растений. Изменения, происходящие в растительном организме в ходе закалки. Механизмы повышения морозоустойчивости при закалке.

Активированный кислород. Активные формы кислорода (АФК): супероксидный радикал, гидроксил- радикал, синглетный кислород. Механизмы их образования. Вклад фотосинтетической и дыхательной ЭТЦ в генерацию супероксидного радикала. Роль

высокой интенсивности света в перевосстановленности ЭТЦ хлоропластов и образовании супероксидных радикалов. Генерация АФК при стрессах. Токсическое действие АФК; стимуляция перекисного окисления липидов.

Механизмы защиты растений от избытка АФК. Пути предотвращения образования АФК в клетках растений. Антиоксидантные системы клетки: аскорбат - глутатионовый цикл, осто коферол. Антиоксидантные ферментативные системы. Семейство супероксиддисмутаз. Аскорбатпероксидаза, ксантофилльный цикл и др.

Аноксия и гипоксия. Растения, устойчивые к недостатку кислорода. Роль гликолиза в адаптации растений к недостатку кислорода. Анатомические особенности растений, устойчивых к аноксии и гипоксии - стратегия избежания анаэробиоза. Роль гормонов в адаптации к анаэробиозу. Ответная реакция растений на резкое снижение содержания кислорода в среде. Белки, образующиеся в растениях в ходе адаптации к недостатку кислорода. Их функциональная роль. Попытки получения устойчивых к недостатку кислорода форм растений.

Токсичность тяжелых металлов для растений их накопление в тканях. Механизмы защиты: компартментация и накопление тяжелых металлов в вакуолях и КС, Роль фитохелатинов. Видоспецифичность в чувствительности и устойчивости растений к избытку и недостатку тяжелых металлов в среде. Фиторемедиация.

Фитоиммунитет. Фитоиммунология как составная часть общей иммунологии. Функции иммунитета. Иммунитет. Двухфазность ответа растений на внедрение патогена: распознавание патогена и защитная реакция. Элиситоры, Роль пектинов в распознавании. Рецептор - лигандный тип взаимодействия растения-хозяина и патогена. Роль олигосахаринов в ответной реакции растения на внедрение патогена. Некротрофы и биотрофы - низко- и высокоспециализированные патогены. Детерминанты устойчивости растений к патогенам: антибиотические вещества (фитоалексины), механические барьеры, ауксотрофия, реакция сверхчувствительности и др. Детерминанты патогенности микроорганизмов. Тип и степень совместимости в системе: больное растение. Генетическая природа устойчивости растений к патогенам Вертикальная и горизонтальная устойчивости. Теория Флора «ген-на-ген». Сопряженная эволюция растения хозяина и патогена. Приобретение видовой и сортовой специализации патогеном (индукторно-супрессорная модель Хесса).

Роль вторичных метаболитов в вертикальной и горизонтальной устойчивости. Состав и характеристика смол, слизей, камеди, латекса. Внешняя секреция вторичных метаболитов. Специализированные органы секреции. Состав и характеристика эфирных масел. Защитные функции вторичных соединений. Фитоалексины, Доказательства экологических функций вторичных соединений.

Взаимодействие физиологических процессов, их интеграция и согласованное функционирование органов

Донорно-акцепторные взаимодействия как основа эндогенной регуляции фотосинтеза в системе растительного организма. Механизм эндогенной регуляции в системе растения: потоки углерода, используемые на синтез различных соединений и их распределение по тканям и органам. Теория фотосинтетической продуктивности. Пути повышения эффективности использования солнечной энергии при фотосинтезе. Донорно-акцепторные отношения, реутилизация и круговорот минеральных элементов в растении. Системы регуляции и их иерархия в растении.

Регуляция распределения роста и веществ, а также взаимодействия органов в целом растении.

Системы регуляции: трофическая, гормональная и электрофизиологическая. Понятие «запрос» и предполагаемые механизмы передачи сигнала. Донорно-акцепторные отношения.

Регуляция процессов на клеточном уровне. Метаболитная регуляция и механизм контроля протекания процесса по принципу отрицательной (положительной) связи конечными продуктами. Аденилатный контроль.

Компартментация процессов и веществ как способ организации регуляции процессов в пространстве и времени.

Взаимодействие дыхания и фотосинтеза: обмен продуктами и субстратами. Особенности дыхательного процесса в фотосинтезирующей клетке.

Примерные вопросы к экзамену:

- 1. Пигментные системы фотосинтезирующих организмов. Хлорофиллы, каратиноиды, фикобилины: строение, спектральные свойства, функции. Электронно-возбужденное состояние пигментов.
- 2. Особенности строения растительной клетки.
- 3. Успехи генной инженерии растений.
- 4. Две фотосистемы. Состав, функции, локализация. Реакционный центр. Светособирающие комплексы. Организация пигментов в светособирающих комплексах.
- 5. Основные этапы трансгенеза растений.
- 6. Азотный обмен высших растений: восстановление нитратов и пути усвоения аммиака.
- 7. ЭТЦ фотосинтеза: циклический и нециклический транспорт электронов.
- 8. Состояние воды в растворах. Взаимодействие воды и биополимеров, гидратация. Формы воды в клетке: свободная и связанная вода, их физиологическая роль.
- 9. Химическая и биологическая азотфиксация. Круговорот азота в природе.
- 10. Фотофосфорилирование. Хемиосмотическая теория сопряжения Митчелла.
- 11. Биотехнологические аспекты защиты растений от болезней и вредителей и сорной растительности.
- 12. Устьичная транспирация. Регуляция устьичных движений
- 13. Восстановительный пентозо-фосфатный путь.
- 14. Сигнальные системы клеток растений: основные типы и общие принципы их функционирования.
- 15. Преимущества и перспективы клонального микроразмножения растений.
- 16. Химизм реакций ассимиляции С4-растений. Типы С4-растений. Метаболизм кислот у толстянковых.
- 17. Физиолого-биохимические основы иммунитета растений.
- 18. Использование сомаклональной изменчивости для создания новых сортов растений.
- 19. Фотодыхание и его физиологическое значение
- 20. Неспецифическая и специфическая природа устойчивости растений к экстремальным факторам внешней среды.
- 21. Соматическая гибридизация как один из нетрадиционных походов в создании новых видов растений.
- 22. Фотосинтез в системе донорно-акцепторных отношений
- 23. Активные формы кислорода, окислительный стресс и иммунитет растений.
- 24. Полисахариды клеточной стенки.
- 25. Экология фотосинтеза: влияние основных факторов среды на интенсивность и направленность фотосинтеза
- 26. Классификация, синтез и функции фенольных соединений в растениях.
- 27. Клеточная селекция, основные методы и преимущества.
- 28. Окислительное фосфорилирование: механизмы и энергетическая эффективность. Особенности ЭТЦ дыхания растений.
- 29. Неспецифические изменения метаболизма при адаптационном синдроме клеточной системы.
- 30. Особенности водного обмена у растений различных экологических групп.

- 31. Гликолиз и цикл Кребса: химизм, энергетический выход.
- 32. Цитокинины. Природные и синтетические. Открытие, содержание, синтез, транспорт и распределение в растении. Физиологическая активность и механизмы действия. Взаимодействие с другими гормонами.
- 33. Фитогормоны ингибиторы роста: абсцизовая кислота и этилен. Строение, синтез, содержание и распределение в растении. Физиологическая активность и механизмы действия. Практическое использование.
- 34. Взаимосвязь дыхания и фотосинтеза.
- 35. Гиббереллины. Строение, содержание, синтез, транспорт, распределение в разных частях растения. Физиологическая активность и механизмы действия. Практическое использование.
- 36. Роль микроэлементов в жизнедеятельности растений.
- 37. Дыхание роста и дыхание поддержания, их физиологическая роль и изменение в онтогенезе.
- 38. Ауксины. Строение, содержание, синтез, распределение в различных органах растения. Полярный транспорт. Физиологическая активность и механизмы действия. Практическое использование.
- 39. Транспирация, ее значение; лист как орган транспирации. Виды транспирации, ее показатели. Суточный ход транспирации, влияние внешних условий.
- 40. Поступление воды в растительную клетку. Осмотическое давление и его значение в поглощении воды клеткой. Методы определения осмотического давления.
- 41. Рост и развитие растений. Этапы онтогенеза высших растений: эмбриональный, ювенильный, размножение, старость и отмирание.
- 42. Ростовые движения: тропизмы, настии.
- 43. Термодинамические показатели водного режима растений: химический и водный потенциал. Сосущая сила клетки. Методы определения водного потенциала и сосущей силы.
- 44. Фазы роста растительной клетки: деление, растяжение, дифференцировка. Старение и смерть клетки.
- 45. Механизмы пассивного и активного транспорта ионов через мембраны.

Учебно-методическое обеспечение и информационное обеспечение программы вступительного экзамена в аспирантуру по научной специальности 1.5.21 Физиология и биохимия растений

Основная литература:

- 1. Медведев С.С. Физиология растений: Санкт-Петербург: БХВ-Петербург, 2015. 496 с
- 2. Кузнецов В.В. Молекулярно-генетические и биохимические методы в современной биологии растений [Электронный ресурс]: учебное пособие / В.В. Кузнецов, В.В. Кузнецов, Г.А. Романов. М.: Издательство «Лаборатория знаний», 2015. 498 с. Режим доступа: https://e.lanbook.com/book/66252.
- 3. Основы биохимии вторичного обмена растений: Учебно-методическое пособие / Г.Г. Борисова, А.А. Ермошин, М.Г. Малева. 2-е изд., стер. М.: Флинта, 2018. 128 с. http://znanium.com/bookread2.php?book=966461
- 4. Хелдт, Г.-В. Биохимия растений [Электронный ресурс] / Г.-В. Хелдт; пер. с англ. 2-е изд. (эл.). М.: БИНОМ. Лаборатория знаний, 2014. 471 с. http://znanium.com/bookread2.php?book=477773

Дополнительная литература:

1. Физиология растений / В.В.Кузнецов, Г.А.Дмитриева. - Москва: Высшая школа: Абрис, 2011. - 783 с. - 55 экз.

- 2. Физиология растений / Н.Д. Алехина [и др.]; под ред. И.П. Ермакова. М.: Академия, 2007. 634 с. 95 экз.
- 3. Якушкина Н.И. Физиология растений / Н.И. Якушкина, Е.Ю. Бахтенко. М.: ВЛАДОС, 2005. 463 с. 283 экз.
- 4. Кузнецов, В.В. Физиология растений: учебник для студентов высших учебных заведений по агрономическим специальностям / В.В. Кузнецов, Г.А. Дмитриева. Москва: Высшая школа: Абрис, 2011. 783, [1] с. 60 экз.
- 5. Практикум по физиологии растений [Электронный ресурс] / В.Н. Воробьев, Ю.Ю. Невмержицкая, Л. 3. Хуснетдинова, Т.П. Якушенкова. Казань: Казанский университет, 2013. 80 с. URL: http://shelly.kpfu.ru/e-ksu/docs/F1844683477 ЭР КФУ.
- 6. Кузнецов В.В. Физиология растений / В.В. Кузнецов, Г.А. Дмитриева. М.: Высш. шк., 2005. 735 с. 45 экз.
- 7. Ботаника. Т. 4 [Текст] / П. Зитте и др.; на основе учеб. Э. Страсбургера, Ф. Нолля, Г. Шенка, А.Ф.В. Шимпера. М.: Академия, 2007. 248 с.