МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

"Казанский (Приволжский) федеральный университет"

УТВЕРЖДАЮ

Первый проректор –

проректор по научной деятельности

Д.А. Таюрский

2023 г.

Программа вступительного испытания по специальности

Уровень высшего образования: подготовка кадров высшей квалификации **Тип образовательной программы:** программа подготовки научных и

научно-педагогических кадров в аспирантуре Научная специальность: 1.5.2 Биофизика

Форма обучения: очная

Общие указания

Вступительные испытания по научной специальности 1.5.2 Биофизика охватывают стандартные разделы университетских курсов по физике и биофизике, в том числе молекулярной биологии, квантовой биологии и синтетической биологии, биоинформатики. Также проверяются базовые компетенции в использовании математического аппарата. Вопросы и структура экзаменационных билетов приведены ниже.

Порядок проведения вступительных испытаний

Вступительное испытание проводится в форме экзамена на основе билетов. В каждом экзаменационном билете по 2 вопроса. Подготовка к ответу составляет 1 академический час (60 минут) без перерыва с момента раздачи билетов. Задания оцениваются от 0 до 100 баллов в зависимости от полноты и правильности ответов.

Критерии оценивания

Оценка поступающему за письменную работу выставляется в соответствии со следующими критериями.

Отлично (80-100 баллов)

Поступающий обнаружил всестороннее, систематическое и глубокое знание материала, умение свободно выполнять задания, усвоил основную литературу и знаком с дополнительной литературой, рекомендованной данной программой, усвоил взаимосвязь основных понятий физики в их значении для приобретаемой профессии, проявил творческие способности в понимании, изложении и использовании учебно-программного материала.

Хорошо (60-79 баллов)

Поступающий обнаружил полное знание вопросов физики, успешно выполнил предусмотренные тестовые задания, показал систематический характер знаний по физике и способен к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

Удовлетворительно (40-59 баллов)

Поступающий обнаружил знание основ физики в объеме, необходимом для дальнейшей учебы и предстоящей работы по профессии, справился с выполнением тестовых заданий, знаком с основной литературой, рекомендованной данной программой, допустил погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладает необходимыми знаниями для их устранения под руководством преподавателя.

Неудовлетворительно (менее 40 баллов)

Поступающий обнаружил значительные пробелы в знаниях основ физики, допустил принципиальные ошибки в выполнении тестовых заданий и не способен продолжить обучение по физике.

Вопросы программы вступительного испытания в аспирантуру по научной специальности 1.5.2 Биофизика

Теоретическая биофизика

Общая характеристика реакций в биологических системах. Описание динамики биологических процессов на языке химической кинетики. Математическое моделирование, как метод биофизики. Принципы построения математических моделей биологических систем. Стационарные состояния биологических систем. Фармакокинетическая модель. Модель сердечно- сосудистой системы. Динамические свойства биологических процессов. Обратная связь, принцип и виды. Колебательные процессы в биологии. Предельные циклы. Иерархия времен в биологических системах. Процессы самоорганизации в распределенных биологических системах. Кинетика ферментативных процессов.

Молекулярная биофизика

Пространственная организация биополимеров. Виды взаимодействий в биологических молекулах. Конформационная энергия и пространственная организация биополимеров. структурной организации биополимеров. Взаимодействие макромолекул с растворителем. Состояние воды и гидрофобные взаимодействия в биологических структурах. Фолдинг Особенности пространственной организации белков. белка. Механизмы ферментативного катализа. Особенности пространственной организации физикохимические свойства ДНК и хроматина. Механизм реакции полимеризации ДНК и его катализ. Репликация и репарация. Транскрипция. Особенности пространственной организации и физико-химические свойства РНК. Механизм синтеза белка.

Термодинамика

Термодинамика систем вблизи равновесия (линейная термодинамика). Первое и второе начала термодинамики. Второе начало термодинамики в открытых системах. Преобразование энергии в живой клетке. Свободная энергия и электрохимический потенциал. Энергосопрягающие системы клетки. Термодинамика стационарного состояния, пути преобразования энергии в живой клетке. Энтропия, информация и биологическая упорядоченность. Квантовая биофизика. Электронные переходы в биологически важных молекулах. Поглощение света биосистемами. Люминесценция биосистем. Свободные радикалы, методы изучения свободных радикалов. Фотосенсибилизированные фотобиологические процессы.

Биомембраны

Мембрана как универсальный компонент биологических систем. Избирательная проницаемость биомембран. Жидкостно-мозаичная модель. Характеристика мембранных липидов.

Динамика структурных элементов мембраны. Мембранные белки. Латеральная диффузия липидов и белков. Измерение подвижности липидных молекул в мембранах. Фазовые переходы в мембранных системах. Монослой на границе раздела фаз. Бислойные липидные мембраны. Липосомы. Асимметрия мембран.

Транспорт веществ

Пассивный и активный транспорт веществ через мембранные структуры клетки. Диффузиянезаряженных молекул. Электродиффузия ионов. Кинетика активного транспорта. Сопряженный транспорт ионов. Кинетика переноса веществ с помощью переносчиков. Сопряжение транспорта сахаров и аминокислот с транспортом ионов натрия. Трансэпителиальный перенос воды.

Электричество и магнетизм

Мембранный потенциал. Электрогенные помпы. Потенциал действия. Ионные токи через мембрану. Распространение потенциала действия по нервному волокну. Внешние электрические поля тканей и органов. Дипольный эквивалентный электрический генератор сердца. Теория отведений Эйнтховена, генез электрокардиограмм. Электроэнцефалография. Электрические свойства тканей организма. Закон Ома для электролитов, подвижность ионов. Природа емкостных свойств тканей организма. Импеданс тканей, эквивалентные схемы.

Кровообращение

Биофизика системы кровообращения. Реологические свойства крови. Основные законы гемодинамики. Биофизические функции элементов сердечно - сосудистой системы. Кинетика кровотока в эластичных сосудах. Пульсовая волна. Динамика движения крови в капиллярах. Фильтрационно-абсорбционные процессы. Особенности кровотока при локальном сужении сосудов.

Биомеханика

Биофизика мышечного сокращения. Структура поперечно - полосатой мышцы. Модель скользящих нитей. Биомеханика мышцы. Электромеханическое сокращение в мышцах.

Рецепция

Сенсорная рецепция. Фоторецепция. Хеморецепция. Рецепция медиаторов и гормонов. Проблема клеточного узнавания. Зрение. Анатомия глаза. Строение глаза как оптической системы.

Слух. Методы изучения слуха. Строение уха и механизм восприятия звука. Строение органа речи. Акустические волны.

Методы биофизики

Оптическая спектроскопия. Абсорбционная спектроскопия в ультрафиолетовой и видимой областях. Спектры поглощения белков и нуклеиновых кислот. Флуоресцентная спектроскопия. Резонансный перенос энергии (FRET). Круговой дихроизм. Малоугловое рассеяние рентгеновских лучей и нейтронов. Рентгеноструктрный анализ и кристаллография биомолекул. Основные принципы ЯМР-спектроскопии. Применение спектроскопии ЯМР в структур- но-динамических исследованиях биомолекул. Электронная микроскопия, криоэлектронная микроскопия и криоэлектронная томография. Лазерная спектроскопия, исследования электронно-вращательных спектров, фотохимические методы исследования. Применение спектроскопии ЭПР при исследовании биологических объектов. Методы изучения конформационной подвижности: изотопный обмен, люминесцентные методы, гамма-резонансная спектроскопия. Масс-спектрометрия. Методы ионизации биологических макромолекул. Лазерная десорбция-ионизация из матрицы (MALDI). Ультразвук и применение ультразвука в биомедицине. Позитронно-эмиссионная томография. Действии ионизирующих и неионизирующих излучений на биологические объекты и системы. Механизмы поглощения рентгеновских и гамма-излучений, нейтронов, заряженных частиц биологическими объектами.

Учебно-методическое обеспечение и информационное обеспечение программы вступительного испытания в аспирантуру по научной специальности 1.5.2 Биофизика

- 1. Сивухин, Д. В. Общий курс физики: учебное пособие / Д. В. Сивухин. 4-е изд.,стер. Москва: ФИЗМАТЛИТ, [б. г.]. Том 1: Механика 2010. 560 с. ISBN 5-9221-0225-7. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/2313 (дата обращения: 25.10.2023). Режим доступа: для авториз. пользователей.
- 2. Сивухин, Д. В. Общий курс физики: учебное пособие / Д. В. Сивухин. 5-е изд.,стер. Москва: ФИЗМАТЛИТ, [б. г.]. Том 3: Электричество 2009. 656 с. ISBN 978-5-9221-0673-3. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/2317 (дата обращения: 25.10.2023). Режим доступа: для авториз. пользователей.
- 3. Савельев, И. В. Курс общей физики: учебное пособие: в 3 томах / И. В. Савельев. 15-е изд., стер. Санкт-Петербург: Лань, [б. г.]. Том 1: Механика. Молекулярная физика 2019. 436 с. ISBN 978-5-8114-3988-1. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/113944 (дата обращения: 25.10.2023). Режим доступа: для авториз. пользователей.Савельев, И.В.
- 4. Савельев, И. В. Курс общей физики: учебное пособие: в 3 томах / И. В. Савельев. 14-е изд., стер. Санкт-Петербург: Лань, [б. г.]. Том 2: Электричество и магнетизм. Волны. Оптика: Учебное пособие 2018. 500 с. ISBN 978-5-8114-0631-9. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/98246 (дата обращения: 25.10.2023). Режим доступа: для авториз. пользователей.
- 5. Савельев, И.В. Курс общей физики: учебное пособие: в 3 томах / И.В. Савельев. 12-е изд., стер. Санкт-Петербург: Лань, [б. г.]. Том 3: Квантовая оптика. Атомная фи- зика. Физика твердого тела. Физика атомного ядра и элементарных частиц 2018. 320 с. ISBN 978-5-8114-0632-6. Текст: электронный // Электронно-библиотечная система «Лань»: [сайт]. URL: https://e.lanbook.com/book/106893.
- 6. Волькенштейн, М. В. Биофизика: учебное пособие / М. В. Волькенштейн. 4-е изд., стер. Санкт-Петербург: Лань, 2012. 608 с. ISBN 978-5-8114-0851-1. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/3898 (дата обращения: 25.10.2023). Режим доступа: для авториз. пользователей.
- 7. Спирин, А. С. Молекулярная биология. Рибосомы и биосинтез белка: учебное пособие / А. С. Спирин. Москва: Лаборатория знаний, 2019. 594 с. ISBN 978-5-00101-623-6. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/110208 (дата обращения: 25.10.2023). Режим доступа: для авториз. пользователей.
- 8. Плутахин, Г. А. Биофизика: учебное пособие / Г. А. Плутахин, А. Г. Кощаев. 2-е изд., перераб., доп. Санкт-Петербург: Лань, 2012. 240 с. ISBN 978-5-8114-1332-4. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/4048 (дата обращения: 25.10.2023). Режим доступа: для авториз. пользователей.
- 9. Уилсон, К. Принципы и методы биохимии и молекулярной биологии: учебное пособие / К. Уилсон, Д. Уолкер; под редакцией А. В. Левашова, В. И. Тишкова; перевод с английского Т. П. Мосоловой, Е. Ю. Бозелек-Решетняк. 2-е изд. (эл.). Москва: Лаборатория знаний, 2015. 855 с. ISBN 978-5-9963-2877-2. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/66244 (дата обращения: 25.10.2023). Режим доступа: для авториз. пользователей.
- 10. Рубин, А. Б. Биофизика: учебник: в 2 томах / А. Б. Рубин. Москва: МГУ имени М.В.Ломоносова, [б. г.]. Том 1: Теоретическая биофизика 2004. 448 с. ISBN 5-211-

06109-8. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/10122 (дата обращения: 25.10.2023). — Режим доступа: для авториз. пользователей.

Программа вступительного экзамена в аспирантуру составлена в соответствии с государственными образовательными стандартами высшего профессионального образования по специальности 1.5.2 Биофизик.